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Introduction

The overhead of a routing protocol is an important aspect, especially in wireless
networks, where the medium is completely shared and the network capacity is
limited [3]. This work concerns an analysis of the scalability of B.A.T.M.A.N., in
terms of overhead, introduced by the OGM flooding mechanism.
The analysis has been done on regular torus topologies, providing also a gener-
alization for the N-dimensional torus. Ring and Manhattan networks, have been
analysed both theoretically and with simulation. The packet aggregation mecha-
nism, included in the last versions, has been also tested with simulation, showing
that this feature effectively reduce the overhead in dense networks.

OGM overhead analysis

The OGM flooding mechanism used by B.A.T.M.A.N. seems to be not very scal-
able. In fact, in a network composed of N nodes, the number of different mes-
sages flooding the network is exactly N because every node sends out, at regular
intervals, its own originator message. Each message is then rebroadcast by its
neighbours and so on.
In a situation with no message losses, the number of OGM packet sent every OGM
interval is N2, because every node sends its OGM and forwards OGMs of the other
N − 1 nodes. It’s clear that in a situation like this the protocol is not scalable at
all.
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SYMBOL MEANING
d number of dimension
n graph size parameter
N total number of nodes
N set of all nodes
E total number of edges
q loss probability (uniform)
p = (1− q) successful transmission probability
rD (s) number of nodes at distance s in dimen-

sion D
B number of OGM broadcast at each node

each OGM interval

Table 1: Table of symbols used in the document.

In a wireless situation however, packet loss are rather frequent and not all the
OGM packet will be received, so the expected number of OGM sent will be less
that N2.

In the next section we describe the notation, the network topology, and some
other assumptions. Then the theoretical overhead is computed and compared with
real measurements.

Assumption and notation

The network topologies that we will analyse are regular torus networks in which
the size in each dimension, that we call graph size parameter is equal. Denoting as
n the graph size parameter, the number of nodes in a regular torus of dimension
D is N = nD, and the number of edges is E = DND.

Throughout the document a series of assumption that simplify the analysis will
be used:

• Uniform loss probability: all link have the same loss probability q, the
probability of successful transmission is p = (1− q);

• Uniform OGM interval: all nodes have the same OGM interval;

• Shortest path stable routes: all nodes have a single shortest path stable
route toward every other node, route changes are not considered.

The notation used in the document is summarized in table 1.
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Generalities

We can start calculating the expected number of messages sent out by a node in
a generic network. First we have to consider that every node sends out its own
OGM with probability 1. The rebroadcast probability instead is the probability
of having received the OGM from the best route1.

The probability of receiving an OGM from a node via the best path is propor-
tional to the path length. We express as lo,k the length of the optimal path from
node o to node k.
Indicating with N the set of node in the network, the average number of message
broadcast for a single node is:

B = 1 +

N\{o}∑
k∈N

plo,k

With a constant failure probability, the protocol will results to be quite scalable
thanks to the probability of receiving an OGM that decrease exponentially. The
drawback is that it is improbable to receive OGM from far neighbour, with the
consequence of not being aware of existence of distant nodes. For the simulations
a probability dependant on the network dimension will be used.

Bidirectional Ring network

Figure 1: A ring of dimension 12

Ring network is probably the simplest topology to imagine, it can be seen as
an unidimensional torus. A ring with graph size parameter n, has N = n nodes
and E = n links.

The distance distribution is very simple, we have that the number r of nodes

1Remember that B.A.T.M.A.N. rebroadcast only OGM coming from the best route toward
the originator. OGM received from secondary route are discarded.
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at distance s are:

n even: r = 2 s ≤ n

2
− 1

r = 1 s =
n

2

n odd: r = 2 s ≤ n− 1

2

producing a number of broadcast B in each node of:

n even: B = 1 +

n
2
−1∑

s=1

(2ps) + p
n
2

n odd: B = 1 +

n−1
2∑

s=1

(2ps)

for which the summation formulas are:

n even: B = 1 + 2
p
(
p

n
2
−1 − 1

)
p− 1

+ p
n
2

n odd: B = 1 + 2
p
(
p

n−1
2 − 1

)
p− 1

and simplifying we obtain:

n even: B =

(
p

n
2 − 1

)
(p + 1)

p− 1

n odd: B =
2p

n+1
2 − p− 1

p− 1

Bidirectional Manhattan network

Manhattan networks are a simple case of Torus Networks with only two dimen-
sion. Manhattan Networks have been widely studied in the past, especially with
regards to find out optimal routing strategies. In the literature two types of Man-
hattan network have been studied, unidirectional and bidirectional. Our interest
is focused on the bidirectional case that well fit the case of a number of node with
omnidirectional antennas.
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Figure 2: A 4× 4 Bidirectional Manhattan Network

In a network having graph size parameter n, the total number of nodes is
N = n2 and total number of edges is E = 2n2. Now we have to find out a
distribution of shortest path distance in the network. Following [1], with n > 3,
the cardinality (indicated with r) of reachable set of nodes at distance s from each
node is:

n even: r = 4s s ≤ n

2
− 1

r = 4s− 2 s =
n

2

r = 4 (n− s)
n

2
+ 1 ≤ s ≤ n− 1

r = 1 s = n

n odd: r = 4s s ≤ n− 1

2

r = 4 (n− s)
n + 1

2
≤ s ≤ n− 1

So the number of broadcast of a node can be expressed as:

n even: B = 1 +

n
2
−1∑

s=1

(4sps) + (2n− 2)p
n
2 +

n−1∑
s=n

2
+1

(4(n− s)ps) + pn

n odd: B = 1 +

n−1
2∑

s=1

(4sps) +
n−1∑

s=n+1
2

(4(n− s)ps)

Simplifying and applying summation formula for geometric and arithmetic-geometric
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progression, a simpler expression can be obtained:

n even: B =
(
1− p

n
2

)2 [(1 + p)2

(1− p)2

]

n odd: B =
(1 + p)2

(1− p)2
+

4p
n+1
2

(
p

n+1
2 − p− 1

)
(1− p)2

Bidirectional three dimensional torus

Figure 3: A 3-dimensional torus of dimension 2

Analysis of the three dimensional case of Torus Networks is out of the scope of
this work. Anyhow for completeness, a brief exposition of the distance distribution
in such a network is reported.

Following the same procedure used for Manhattan networks, indicating the
cardinality of reachable set of nodes at different distances with r, the number of
nodes at shortest-path distance s in a 3-dimensional torus network having graph
size parameter n (so N = n3 nodes and E = 3n3 edges), with n ≥ 3 are:

n odd: r = 4s2 + 2 s ≤ n− 1

2

r = (3n− 2s)2 − 12 (n− s)2 − 1
n + 1

2
≤ s ≤ n− 1

r = (3n− 2s)2 − 1 n ≤ s ≤ 3

2
(n− 1)
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n even: r = 4s2 + 2 s <
n

2

r = 4s2 − 1 s =
n

2

r = (3n− 2s)2 − 12 (n− s)2 − 4
n

2
< s < n

r = (3n− 2s)2 − 1 s = n

r = (3n− 2s)2 + 2 n < s <
3

2
n

r = 1 s =
3

2
n

Bidirectional N-dimensional torus

A generalization to the N-dimensional case can be done. It is sufficient to use the
results described for a number of dimension less than 3 and use them to formalize
and solve the problem recursively.
Denoting with D the number of dimension, a torus of graph size parameter n have
a total number of nodes N = nD and a number of edges E = DnD. Defining rD (s)
as the number of nodes at distance s in a torus with dimension D, we have that:

rD (0) = 1 ∀D

r1 (s) = 2 s ≤ bn− 1

2
c

r1 (s) = 1 bn− 1

2
c < s ≤ bn

2
c

and recursively for n odd:

rD (s) = rD−1 (s) +

n−1
2∑

i=1

rD−1 (s− i)

and for n even:

rD (s) = rD−1 (s) +

n
2
−1∑

i=1

rD−1 (s− i) + rD−1

(n
2

)
This result comes from the observation that a torus of dimension D and graph
size parameter n, is equivalent to having n torus of dimension D − 1 that can be
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”accessed” moving along one of the D dimensions.
The number of broadcast at each node B can be expressed as:

B =

Dbn
2
c∑

i=0

rD (i) pi

Performance Measures

The measures have been done using a number of qemu virtual machines running an
unmodified linux based operating system (OpenWrt) with B.A.T.M.A.N. (version
2010.1.0 compatibility version 11) integrated. The network links was simulated
using VDE switch to connect various qemu instances, together with wirefilter to
introduce packet loss probability. These network simulation tools are part of the
VDE (Virtual Distributed Ethernet) project2.

Figure 4: Number of OGM messages sent out by every node every
OGM INTERVAL in a ring topology. Are reported the expected
values and the measured ones both with aggregation enabled and
disabled.

This configuration work perfectly for analysing protocol functioning and testing
overhead, but is perfectly useless for testing bandwidth because all link are full-
duplex, in other words every node can receive and transmit simultaneously which

2http://vde.sourceforge.net/
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is impossible in a real wireless network. Furthermore there is no way to simulate
interference between neighbour transmissions.

The tests have been performed twice for every dimension of network, the first
with the packet aggregation feature enabled(which is the default setting), and the
second disabling it. The OGM INTERVAL is set to 1 second while the other
parameters has been set to the default values. Each test last 10 minutes.

The probability of successful transmission used in tests depends on graph size
parameter n:

q = 1− 1

n2

this is for simulate a case in which the number of nodes increase proportionally to
the node density of the network.

In figure 4 is shown the results of simulations on ring topology while in figure
5 are reported the results of simulations on Manhattan topology. Can be observed
a linear relation between the network diameter and the number of OGM sent per
OGM INTERVAL.

Figure 5: Number of OGM messages sent out by every node every
OGM INTERVAL in a Manhattan topology. Are reported the ex-
pected values and the measured ones both with aggregation enabled
and disabled.
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Conclusion

From the results, it emerges that the proposed model fits well, the measured values
are only slightly greater than the calculated ones. Another interesting observation
is that the aggregation feature, included in the last B.A.T.M.A.N. releases, works
well in reducing the number of OGM sent out by every node, so there is not a
concrete room of improvement in these area. An interesting future work can be
the analysis of the impact to the protocol overhead given by the presence of clients
connected to B.A.T.M.A.N. nodes. The list of the connected nodes (HNA) in fact
is written at the end of each OGM packet sent.
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